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Abstract—Thermal conductivity data for saturated liquid, normal hydrogen and for the gas compressed

to 500 atm between 78° and 300°K, have been fitted to a simple function relating excess thermal con-

ductivity, density and temperature. The temperature dependence of this function was derived on the basis

of a lattice theory of thermal conductivity. It has been used to calculate the thermal conductivity of dense

fluid hydrogen between the triple point and 80°K, at pressures up to 350 atm where there are no experi-
mental results.
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velocity of sound;

molar heat capacity at constant volume;
Debye function;;

thermal conductivity;

excess thermal conductivity ;

thermal conductivity at 1 atm;

phonon mean free path;

gas constant;
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Greek symbols
" Griineisen constant ;
g Debye temperature ;

0y, Debye temperature at 0°K ;
v, lattice vibration frequency;
p,  density.
Subscript
g, saturated liquid—vapour curve.
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INTRODUCTION

THE THERMODYNAMIC properties [1] and viscosity
[2] of hydrogen have been investigated over a
wide range of temperature and density during
recent years. Thermal conductivity results for
the dense fluid, however, are restricted to
measurements by Johnston et al. [3] on the
saturated liquid between 15° and 25°K, and
very recently by Golubev and Kal’sina [4] on
the gas compressed to 500 atm at 78°K and
above. In the extensive region between these
two sets of measurements the thermal conducti-
vity, k, is very sensitive to temperature and
pressure, and is of theoretical interest because
hydrogen is a member of the small group of
quantum fluids (He?, He?* H,, D,, T, and Ne).
The excess thermal conductivities of classical
fluids, and of hydrogen above 78°K, are unique,
monotonically increasing functions of density.
This leads one to expect that the temperature
derivative of the thermal conductivity along the
saturated liquid curve (6k/0T), will always be
negative, as turns out to be the case for all
classical liquids. However, Rogers et al. [ 5] have
emphasized that (0k/0T), is positive over a
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considerable temperature range for hydrogen
and other quantum fluids.

Prior to the recently published measurements
down to 78°K [4] there were two attempts to
estimate the thermal conductivity of compressed
gaseous and liquid hydrogen. In both cases
results for the compressed gas were only avail-
able above 300°K at densities up to half the
critical density, and drastic interpolations were
required. Rogers and Brickwedde [6] used the
quantum mechanical principle of corresponding
states to account for a positive (0k/0T),, but
were only able to make a qualitative estimate of
the thermal conductivity of the compressed
liquid and gas. The interpolation of Schaefer
and Thodos [7] does not yield a positive
(Ok/OT)s.

The thermal conductivity calculations in this
paper, however, do make use of the latest data
down to 78°K. The author has indicated in a
previous paper [ 8] that a lattice theory of thermal
conductivity can predict a positive (0k/0T), at
low temperatures, as a result of the positive
temperature derivative of the specific heat of a
lattice below its Debye temperature 6. A smooth
relationship between 6 and density is presented
in this paper, which is quantitatively consistent
with the specific heat of the solid as a function
of density, the thermal conductivity of the
saturated liquid and the classical behaviour
of the thermal conductivity above 78°K. This is
used in conjunction with the unique relation-
ship between excess thermal conductivity and
density from Golubev and Kal'sina’s data in
the classical region, to calculate the thermal
conductivity of normal hydrogen between the
triple point and 80°K at pressures up to 350 atm.

THE EXCESS THERMAL CONDUCTIVITY
OF FLUIDS
The thermal conductivity of a gas is independ-
ent of pressure [9] for the pressure range in
which the mean free path of the molecules is
smaller than the dimensions of the container
(and measuring probe). but much larger than
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their own diameter. The very low pressure
thermal conductivity is that of the well under-
stood Knudsen gas [10] and will not be
discussed.

At high pressures the thermal conductivity
increases above the low pressure limit as a result
of an additional mechanism, sometimes called
collisional transfer, but denoted by vibrational
transfer of energy in this paper. Under these
conditions the configurational potential energy
of the assembly of molecules differs significantly
from zero, and the system as a whole acquires
vibrational degrees of freedom. Vibrational
wave (i.e. phonon) transport can then occur in
the presence of a temperature gradient. These
vibrations should be distinguished from intra-
molecular vibrations which occur within the
individual diatomic molecules of the fluid. The
excess thermal conductivity kP, T) is com-
monly measured as the difference between the
thermal conductivity of the dense gas or liquid,
and that of the gas at 1 atm pressure and the
same temperature, ky(7T). In a two phase region
at temperatures where the vapour pressure is
less than 1 atm, ko T') is the thermal conductivity
of the vapour.

k*(P, T) is a function of the density, p. only
and can be written:

k*(P, T) = k*(p) (1)

for many substances over a wide range of
conditions excluding the immediate vicinity of
the critical point. Equation (1) is the basis of
many correlations of the thermal conductivities
of simple fluids in the liquid and dense gaseous
states [11]. In the critical region there is an
anomalous increase in thermal conductivity,
which has been thoroughly investigated for CO,
by Sengers [12] and for NH; by Needham and
Ziebland [13], but its origin is obscure, and it
is not possible to make an a priori estimate of
the magnitude of the enhancement for hydrogen.
However, it will occur only in a very narrow
range of (P, T) conditions and is ignored in the
present work.
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THE THERMAL CONDUCTIVITY OF
SOLIDS AND LIQUIDS

Intuitively one might expect the mechanism
of vibrational energy transfer to be similar in
liquids and solids. The thermal conductivity
of solids is fairly well understood qualitatively
and quantitatively [14]. Thermal energy is
transmitted in vibrational waves and the cor-
responding particles are phonons. The less
rigorous theories assuming with FEinstein a
single lattice frequency, v, give:

ksoiia = %P ¢ CC, (2)

where p is the density in molar units, £ is the
mean free path of the phonon, C; is the velocity
of sound in the solid and C, is the molar heat
capacity at constant volume. £ and hence k are
limited only by the size of the sample in a perfect
harmonic solid. In a real solid the phonons are
scattered by:

(i) anharmonic components in the lattice
vibrations (Umklapp processes), and

(ii) lattice imperfections including disloca-
tions, vacancies, impurities and other
disorders.

Equations similar to (2) have been used to
explain the thermal conductivity of glasses [15]
and polymers [16] at low temperatures. More
rigorous derivations using the Debye spectrum
for the solid frequencies have resulted in com-
plex equations. Their solutions have successfully
predicted the temperature dependence of the
thermal conductivity of crystalline solids at
low temperatures [17] where k, increasing with
1/T becomes large as the lattice vibrations
become increasingly harmonic. However, k
always passes through a maximum close to 0°K
when lattice defect scattering takes precedence.
Then k falls rapidly to zero as a result of the
behaviour of C, close to 0°K.

The disordered structure of the glassy state
defines a relatively low limit for ¢ at all times, so
that k decreases quite smoothly from the room
temperature value to zero at 0°K without the
occurrence of a maximum for these materials.
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Eyring et al. [ 18] and McLaughlin et al. [19]
have used lattice theories and expressions like
equation (2) to predict the thermal conductivi-
ties of classical liquids below their critical points,
at densities not much less than the solid density.
Under these conditions X-ray evidence suggests
that liquids have a disordered lattice structure
[20], which emphasizes the similarity between
the glassy and liquid states, and indicates that
the calculations are not entirely inappropriate.
Predictions by Eyring et al. of the temperature
and pressure dependence of the thermal con-
ductivity of argon, nitrogen and methane agree
with experiment to within 4 per cent.

Lattice theories are applied to quantum
fluids in this paper, and equation (2) is used to
estimate how equation (1) (which gives the excess
thermal conductivity of hydrogen as a function
of density) must be modified at very low tempera-
tures. The lattice thermal conductivity, of
course, is equivalent to the excess thermal
conductivity, k*, of the fluid and not the total
conductivity k. k, arises from an entirely
different mechanism. Hence:

k¥P,T)=3p ({CC, ()

where p, £ and C, are the density, phonon mean
free path and velocity of sound for the fluid.
C, here corresponds to the ‘“‘vibrational” molar
specific heat of the fluid and must not be con-
fused with the actual measured specific heat,
whose non-vibrational components do not
contribute to this thermal conductivity mechan-
ism. It may be thought of as the specific heat of
the solid extrapolated to the temperature and
density of the fluid in the absence of melting.
The excess or residual specific heat C¥, being
the difference between the specific heat of a
fluid and of the perfect gas at the same tempera-
ture, is much used in the thermodynamics and
statistical mechanics of classical fluids [21].
It is less meaningful for hydrogen as it becomes
negative for the saturated liquid [1].

An exact adherence to the Debye theory
of specific heats [22] will not occur but
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nevertheless C, will be written:
C, = 3R D[8(p)/T]. 4)

R is the gas constant, # the Debye temperature
and D[6(p)/T] the Debye function, which goes
to zero with T* at 0°K, and approaches unity
asymptotically at temperatures above 6.

Table |. The triple point temperatures and Debye
temperatures for hydrogen, argon and krypton

Triple point Debye
Substance temperature  temperature
(T, °K) (6°K)
Hydrogen 14 100
Argon 84 85
Krypton 116 65

Table 1 contains the triple point temperatures
T.. and approximate Debye temperatures 8 for
the solid at zero pressure, for hydrogen [23],
argon [24] and krypton [24]. The relative
magnitudes of T, and ¢ indicate that hydrogen
can exist as a dense fluid at temperatures
which are below 6, as well as at temperatures
above 8. Krypton can only exist as a dense
fluid above 8 and argon is a borderline case.
Thus it becomes clear that equation (3) has
all the required characteristics. It can account
for classical fluids (T always greater than 6)
having only one form, equation (5), for k*
throughout the dense gaseous and liguid regions:

k*(P, T) = p /C;R = k¥(p). &)

It can also account for k* for hydrogen,
following the same form, equation (5), at high
temperatures and another form, equation (6},
at low temperatures.

k*(P.T) = p ¢ CRRD[6(p)/T]. (6)

Equation (5) states that the product p /CR
{and therefore £ Cg) is determined unambigu-
ously by density in the classical region, and we
assume here that its value is the same in the
quantum region at the same density for the

same substance. Eliminating it from equations
(5) and (6) one obtains equation (7).

K*P.T) = k"p) D[O(YT]. ()

It is clear that a positive (0k*/0T), can arise
from the positive temperature derivative of
Df6(p)/T].

In the next section the expressions k*(p) and
8(p) are obtained as functions of density, from
experimental data on hydrogen, and equation
{7) is then used to calculate the thermal con-
ductivity of gaseous and liquid hydrogen in
regions where density measurements are avail-
able.

THE THERMAL CONDUCTIVITY
OF HYDROGEN

The thermal conductivity of hydrogen has
been measured recently at temperatures be-
tween —195° and 20°C, at pressures up to
500 atm [4]. The authors, Golubev and Kal’sina,
do not specify the ortho-para composition of
their hydrogen, but since they do not mention a
catalytic converter, the measurements were
probably made on normal hydrogen. Con-
firmation of this assumption is found in close
agreement between their 1 atm data and the
accepted values [25] for normal hydrogen.

The maximum density of the compressed gas
in these measurements 0036 mol cm™? is as
large as the density of the saturated liquid.
Golubev and Kal’sina found that the excess
thermal conductivity was a unique function of
density over the entire temperature range, and
they use this relationship to smooth their data,
which they present at integral temperature and
pressure intervals. However, they do not present
their k*(p) relationship, nor do they specify the
source of their density data. This relationship
was reproduced using their k*(P, T) data and
the p(P, T) data of Michels et al. [26]. Experi-
mental density results are not available for the
highest pressures and lowest temperatures of
the thermal conductivity data. These densities
were obtained by linear extrapolation of P
versus T isochores from Michel’s data for
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normal hydrogen, and N.BS. data for para-
hydrogen [27]. The use of density data for both
forms of hydrogen in this extrapolation does
not introduce significant error, because the
density is almost independent of ortho-para
composition [1].

k*(p)/p is presented graphically in Fig. 1 for
temperatures between —195° and —150°C
(78° and 123°K). Most points lie within two per
cent of the smooth curve. Smoothed values of
k*(p) are presented in Table 2.
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{iii) determination of k*{p) from the tabulated
values of k*(p) versus p in Table 2;
(iv) calculation of D[6(p)/T] using equation
(7), and
(v) calculation of 8(p)/T and then 6(p) using
tabulation of D(A/T) and the temperature
of Johnston’s k(P, T) measurement.

Table 2. Excess thermal conductivity for compressed normal
hydrogen gas as a function of density above 78°K

oy _ - Residual Residual
. 2 3
At densities below 25 x 10 mol M7 Density thermal Density thermal
k* is well represented by a quadratic equation  (p x 10°  conductivity {p x 10  conductivity
in p: mol {k* x 10*cal mol (k* x 10*cal
cm™ ) em~ s em™3) cm™ st
k*p) = 0-308 p + 0-1644 p?, 3] degK™") degK ™)
k*(p) is the residual thermal conductivity x 10* gg 8:82‘; g:g }i;é
in cal cm™" s™" degK™", and p is the density 04 0150 34 14690
x 102 in mol cm 3. 06 0244 26 1-895
6(p) as a function of p was obtained from 08 0352 28 2116
Johnston’s data for the thermal conductivity of 10 0473 30 2376
the saturated liquid. Each of his measured i:ﬁ 3:2(5)3, gjﬁ éjggg
values of k(P, T), was manipulated as follows: 14 0915 36 3424
. . . 18 1-087 38 3914
(i) subtraction of the appropriate ky(T)
[25] from k(P, T), to give k*(P, T), ; P pEe
(i) specification of p at the temperature (and 44 6072
pressure) of the measurement [1];
PR
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FiG. 1. The excess thermal conductivity of compressed gaseous hydrogen
above 78°K.
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The results are plotted in Fig. 2. Ahlers [23]
has determined #(p) at higher densities from
his measurements of C, for solid hydrogen as a
function of temperature and pressure. The
Debye theory of lattice vibrations does not
allow for any temperature variation of 8. Never-
theless the Debye 0’s of argon [24], krypton
[24] and hydrogen [23] decrease by about 10
per cent from 6, at 0°K and pass through

180

160 —

o Data abtoined from 4" for

140 1— sgturated liquid hydrogen
¥ 120 |— Daota obtgined from Cv
@ for solid hydrogen

. at 15 °K
£ 1001
2

e

& so—
£

2

¥ 60—
£

»

[

5
]

o | ] 1 I ] I
26 30 34 38 42 46 50 54
3

Density, p x 103 mol cm

FiG. 2. Debye temperatures for hydrogen obtained from the

thermal conductivity of the saturated liquid and the specific
heat of the solid.

shallow minima at about 15°K. Non-vibrational
contributions to C, due to vacancy formation
complicate the interpretation at higher tempera-
tures, and it is assumed in this paper that the
15°K values are appropriate at all higher
temperatures. These are included in Fig. 2 at
the three densities of the measurements on solid
hydrogen. The data for the solid and liquid are
well fitted by a linear function of p:

O(p) = 67 x 10?7 p — 1895 9

where the units of p are mol cm ™2 and of 6, °K.

. WYNN JONES

Clearly this expression predicts negative 8’s at
densities below 282 x 1072 mol ecm™? so
that it is not used below this density in the
following calculations. Presumably 6(p) curves
sharply in this region and approaches zero
asymptotically at p = 0. However, the exact
form of (p) is insignificant here because T/6 is
always large, and D{6/T) equal to unity. The
expression:

0(py) = O(p,) (p1/p2) (10)

where 7 is the Griineisen constant, fits the solid
data fairly well [23], but a plot of log 6 versus p
through the liquid and solid data is strongly
curved, indicating a variable y, and was rejected
in favour of equation (9} for interpolation of
6(p) data.

The thermal conductivity of the dense fluid
was then calculated at integral temperatures
and pressures using the following procedure:

{i) evaluation of the appropriate density
from N.B.S. tabulations [27] (the density
of normal hydrogen is only marginally
different from that of parahydrogen [1],
and the difference may be ignored for
these calculations);

{ii) evaluation of the classical value of k*(p)
using Table 2, and determination of
O(p) and hence T/6(p) using equation (9)
and the appropriate temperature;

(i1} determination of k*(P, T using equation
{7) and tabulations of the Debyve function ;

{(iv) Addition of k*(P, T) and the appropriate
ko(T) for normal hydrogen [25] to give
kP, T)

RESULTS AND DISCUSSION

The thermal conductivity of dense fluid
normal hydrogen, calculated as described in the
previous section, is presented in Table 3 at
integral pressures {up to 350 atm) and tempera-
tures between 17° and 80°K. The thermal
conductivity of the saturated liquid and vapour,
and of the freezing liquid is given at close
temperature intervals in Table 4. Thermal
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Table 3. Thermal conductivity of normal hydrogen at integral pressures and temperatures k + 10% cal cm™" 57! degK ™'

10 15 20 30 50 75 100 150 200 250 300 350
17 031 246 244 242 239 238 228 220 214
18 033 262 263 260 259 254 248 240 235
20 037 289 284 286 287 283 279 276 271 263 256
22 040 299 302 303 302 303 304 302 300 295 291 286 282
24 044 302 305 308 310 314 317 322 324 323 323 321 316 314
25 046 299 304 308 310 317 323 328 332 333 335 337 333 333
26 048 296 300 305 309 316 326 332 338 342 347 349 351 348
28 052 062 288 295 302 311 326 339 348 360 367 372 376 376
30 055 064 064 276 288 302 322 339 352 367 381 389 397 402
32 058 066 084 245 264 287 313 335 350 373 387 403 414 420
33 060 067 083 223 2350 277 308 332 349 375 399 407 419 431
34 061 068 081 167 232 266 302 327 346 374 394 411 425 436
35 063 070 081 114 209 256 296 323 344 374 396 414 430 441
36 065 07t 082 105 178 244 289 318 341 374 397 416 433 447
38 068 074 083 099 131 215 273 310 332 369 396 417 438 455
40 071 077 085 097 117 184 257 298 324 363 394 418 442 459
50 087 091 09% 103 110 131 186 243 280 330 366 399 428 454
60 1-01 104 108 113 1118 130 162 205 243 297 337 369 399 430
70 15 118 121 125 129 137 159 190 221 275 314 347 375 403
80 1-31 133 136 139 142 149 166 189 214 261 301 332 360 386

conductivity isobars up to 350 atm from the
triple point to 80°K, and the freezing liquid and
saturated liquid and vapour data are presented
in Fig. 3.

It is clear that the calculated curves closely
fit the experimental data for the saturated liquid,
and for the compressed gas at 78°K. Calcula-
tions for the saturated liquid and vapour were
continued up to the critical point and in Fig. 3
are shown to run into each other smoothly at
k 143 x 107% cal em™! s7! degk™ 1.
However, work referred to earlier [12, 13]
indicates that molecular clustering will cause
an anomalous increase in Kk in this region.
Clustering occurs in the (P, T) region where the
compressibility becomes very large near to, and
infinite at, the critical point. It is expected that
the calculated data will be unreliable here and
is indicated by broken curves in Fig. 3.

The calculated values of k should be reliable
to a few per cent in the remainder of the (P, T)
range.

D[B(p)/T] assumes the value of 0998 at
80°K and 350 atm, and 098 at 78°K and 500
atm, which is the lowest temperature and
highest density of Golubev and Kal’sina’s
measurements. Hence these calculations are
fully consistent with the classical behaviour of
the thermal conductivity of hydrogen at 78°K
and above. At the critical density classical
behaviour is maintained at all temperatures
down to the critical temperature.

A comparison with previous estimates is of
interest. The correlation of Rogers et al. [6]
indicates that compression of the saturated
liquid will cause a reversion to classical be-
haviour. This paper, however, predicts that
compression will bring about even larger devia-
tions from classical values, as a result of the
increased value of 6 at higher densities. At
78-15°K, the predictions of Schaefer and Thodos
[7] agree with the measurements of Golubev
and Kal’sina (and this work) at 150 atm only.
They are too large by 13 per cent at 50 atm and



752

I. WYNN JONES

Table 4. Thermal conductivity of saturated liquid and vapour and freezing liquid normal hydrogen

Density {1]

Thermal conductivity
{p x 10* mol cm™3)

tk x 10%calem™! s™ ' degK ™)

Temp. (°K) = :
Saturated Saturated Freezing Saturated Saturated Freezing
liquid vapour liquid liquid vapour liquid
14 3-83 0-006 383 1-83 025 1-83
15 379 0010 3.92 2:05 0-27 192
16 374 0016 400 229 029 201
17 370 0023 4-08 2-48 032 215
18 365 G033 415 2-62 034 2-24
19 360 0045 422 276 036 237
20 354 0060 429 2-89 038 249
21 348 0078 435 297 0-41 2:65
22 342 0100 4-41 299 043 2.82
23 336 0126 447 302 0-46 300
24 329 O-157 301 0-49
25 321 0194 2:99 0-52
26 313 0238 294 0-56
27 304 0-290 2-88 0-60
28 2-94 0353 279 0-64
29 2-82 0429 2:67 0-69
30 2:69 0-524 2-54 075
31 2:53 (648 2-39 083
32 2:31 218
33 190 178
3318 1-49 149 i-43 143
5

.

b4

4 Experimental values 350(tm)

g :22';;?'.?2,';"351 at 78°K 300fetm)

@ 250(a1m)

e 200(atm)

(%]

5 e 150{atm)

o 350,

S 9y A oterm

x m(;ﬂ;r)etz) i;x;;e::oim 75 {otm}

- 75 {otm)

;“;; i Triple point— Sotetm) %;?:::?k;;’xz‘::ucrmve 50 faym)
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S i\ 20(atm)
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FiG. 3. Thermal conductivity isobars for normal hydrogen from the triple point to 80°K at pressures

up

to 350 atm.
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too small by 9 per cent at 300 atm. At the
critical temperature above 50 atm they are
smaller by 15-18 per cent than the values in
this paper. Their predictions for the saturated
and compressed liquid are quite different from
these because of their neglect of the positive
value of (¢k/0T),. At 20°K they predict that a
pressure of 100 atm increases the thermal
conductivity of the liquid by 12 per cent,
whereas this paper predicts a decrease of 6 per
cent.

Values of k*(p) at densities up to 1-8 x 1072
mol ¢cm™? from Hamrin and Thodos’s [28]
very recent measurements above 0°C, are about
30 per cent higher than those used in this paper.
However, since their individual measurements
of k*(p) are scattered by about +15 per cent,
and the results apply to a much higher tempera-
ture range, this discrepancy is not significant to
the results of this paper. k* is less than one
quarter of k above 0°C, even at 660 atm—the
highest pressure of Hamrin and Thodos’s
measurement, which accounts for the wide
spread in their k* data.
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Thermodynamic and related properties of parahydrogen

Résumé-—Les résultats de conductivité termique pour I’hydrogéne normal liquide saturé et pour le gaz
comprimé 4 500 atm entre 78° et 300°K, ont été corrélés par une fonction simple reliant la conductivité
thermique supplémentaire, 1a masse volumique et la température. .

La dépendance de cette fonction par rapport & la température 4 été obtenue sur la base d’une théorie
de la conductivité thermique avec le modéle du réseau. On I'a employé pour calculer la conductivité
thermique de hydrogéne fluide dense entre le point triple et 80°K, & des pressions allant jusqu’a 350 atm

pour lesquelles il n'y a pas de résultats expérimentaux.

Zusammenfassung—Werte der Wirmeleitfahigkeit fiir gesittigte Flitssigkeit, Normalwasserstoff und fiir

ein Gas, das auf 500 atm komprimiert wurde im Bereich 78-300°K, wurden einer einfachen Funktion

angepasst, die eine Beziehung herstellt zwischen Erhéhung der Wirmeleitfihigkeit, Dichte und Tempera-

tur, Sie Temperaturabhingigkeit dieser Funktion wurde mit Hilfe einer Gittertheorie der Wirmeleit-

fahigkeit von Wasserstoff zwischen Tripelpunkt und 80°K, bei Driicken bis zu 350 atm. Dafiir lagen bisher
keine Versuchsergebnisse vor.

Anproranaa—TemonpoBOAHOCT, HACHUIEHHONO KUAKOro OORMHOINO BONOPOAA ¥ Tasa,

cmaroro %o 500 arm npu 78-300°K, onmcwiBaercA mpocroit dynxumedt, ydmTHBaRMEH

u36HTOYHYI0 TeHIONPOBOAHOCTE, NIOTHOCTE H Temmeparypy. Ha ocuosanum pemerounoft

TEOPHHM TENIOIPOBONHOCTH TONYyYeHA TEMIEPATYPHAA 3aBUCHMOCTh NaA 3ToH QyHKIuMM.

OHa MCHONB30BANACH AJNA DPACUeTOB TEIIONPOBOXHOCTH IIIOTHOTO BOZOPOrA NPH TeMIepa-

rype or Tpofinoh touxu go 80°K u pamuemmm go 350 atM, oKCTepHMENTAJbHEE HaHHHE NIIA
KOTOPHIX OTCYTCTBYIOT.



