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Abstract-Thermal conductivity data for saturated liquid, normal hydrogen and for the gas compressed 
to 500 atm between 78” and 3OO”K, have been fitted to a simple function relating excess thermal con- 
ductivity, density and temperature. The temperature dependence of this function was derived on the basis 
of a lattice theory of thermal conductivity. It has been used to calculate the thermal conductivity of dense 
fluid hydrogen between the triple point and 80”K, at pressures up to 350 atm where there are no experi- 

mental results. 
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INTRODUCTION 

THE THERMODYNAMIC properties [l] and viscosity 
[2] of hydrogen have been investigated over a 
wide range of temperature and density during 
recent years. Thermal conductivity results for 
the dense fluid, however, are restricted to 
measurements by Johnston et al. [3] on the 
saturated liquid between 15” and 25”K, and 
very recently by Golubev and Kal’sina [4] on 
the gas compressed to 500 atm at 78°K and 
above. In the extensive region between these 
two sets of measurements the thermal conducti- 
vity, k, is very sensitive to temperature and 
pressure, and is of theoretical interest because 
hydrogen is a member of the small group of 
quantum fluids (He3, He4, H,, Dz, T, and Ne). 
The excess thermal conductivities of classical 
fluids, and of hydrogen above 78”K, are unique, 
monotonically increasing functions of density. 
This leads one to expect that the temperature 
derivative of the thermal conductivity along the 
saturated liquid curve @k/i?T), will always be 
negative, as turns out to be the case for all 
classical liquids. However, Rogers et al. [5] have 
emphasized that (iYk/c?T), is positive over a 
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considerable temperature range for hydrogen 
and other quantum fluids. 

Prior to the recently published measurements 
down to 78°K [4] there were two attempts to 
estimate the thermal conductivity of compressed 
gaseous and liquid hydrogen. In both cases 
results for the compressed gas were only avail- 
able above 300°K at densities up to half the 
critical density, and drastic interpolations were 
required. Rogers and Brickwedde [6] used the 
quantum mechanical principle of corresponding 
states to account for a positive (dk/dT)., but 
were only able to make a qualitative estimate of 
the thermal conductivity of the compressed 
liquid and gas. The interpolation of Schaefer 
and Thodos [7] does not yield a positive 
(ak/aT)o. 

The thermal conductivity calculations in this 
paper, however, do make use of the latest data 
down to 78°K. The author has indicated in a 
previous paper [8] that a lattice theory ofthermal 
conductivity can predict a positive (ak/aT). at 
low temperatures, as a result of the positive 
temperature derivative of the specific heat of a 
lattice below its Debye temperature 8. A smooth 
relationship between 0 and density is presented 
in this paper, which is quantitatively consistent 
with the specific heat of the solid as a function 
of density, the thermal conductivity of the 
saturated liquid and the classical behaviour 
of the thermal conductivity above 78°K. This is 
used in conjunction with the unique relation- 
ship between excess thermal conductivity and 
density from Golubev and Kal’sina’s data in 
the classical region, to calculate the thermal 
conductivity of normal hydrogen between the 
triple point and 80°K at pressures up to 350 atm. 

THE EXCESS THERMAL CONDUCTIVITY 

OF FLUIDS 

The thermal conductivity of a gas is independ- 
ent of pressure [9] for the pressure range in 
which the mean free path of the molecules is 
smaller than the dimensions of the container 
(and measuring probe), but much larger than 

their own diameter. The very low pressure 
thermal conductivity is that of the well under- 
stood Knudsen gas [lo] and will not be 
discussed. 

At high pressures the thermal conductivity 
increases above the low pressure limit as a result 
of an additional mechanism, sometimes called 
collisional transfer, but denoted by vibrational 
transfer of energy in this paper. Under these 
conditions the conligurational potential energy 
of the assembly of molecules differs significantly 
from zero, and the system as a whole acquires 
vibrational degrees of freedom. Vibrational 
wave (i.e. phonon) transport can then occur in 
the presence of a temperature gradient. These 
vibrations should be distinguished from intra- 
molecular vibrations which occur within the 
individual diatomic molecules of the fluid. The 
excess thermal conductivity k*(P, T) is com- 
monly measured as the difference between the 
thermal conductivity of the dense gas or liquid, 
and that of the gas at 1 atm pressure and the 
same temperature, k,(T). In a two phase region 
at temperatures where the vapour pressure is 
less than 1 atm, k,(T) is the thermal conductivity 
of the vapour. 

k*(P, T) is a function of the density, p. only 
and can be written : 

k*(P, T) = k*(p) (1) 

for many substances over a wide range of 
conditions excluding the immediate vicinity of 
the critical point. Equation (1) is the basis of 
many correlations of the thermal conductivities 
of simple fluids in the liquid and dense gaseous 
states [ll]. In the critical region there is an 
anomalous increase in thermal conductivity, 
which has been thoroughly investigated for CO, 
by Sengers [12] and for NH, by Needham and 
Ziebland [13], but its origin is obscure, and it 
is not possible to make an a priori estimate of 
the magnitude of the enhancement for hydrogen. 
However, it will occur only in a very narrow 
range of (P, T) conditions and is ignored in the 
present work. 
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THE THERMAL CONDUCTIVITY OF 
SOLIDS AND, LIQUIDS 

Intuitively one might expect the mechanism 
of vibrational energy transfer to be similar in 
liquids and solids. The thermal conductivity 
of solids is fairly well understood qualitatively 
and quantitatively [14]. Thermal energy is 
transmitted in vibrational waves and the cor- 
responding particles are phonons. The less 
rigorous theories assuming with Einstein a 
single lattice frequency, v, give : 

where p is the density in molar units, e is the 
mean free path of the phonon, C, is the velocity 
of sound in the solid and C, is the molar heat 
capacity at constant volume. land hence k are 
limited only by the size of the sample in a perfect 
harmonic solid. In a real solid the phonons are 
scattered by : 

(i) anharmonic components in the lattice 
vibrations (Umklapp processes), and 

(ii) lattice imperfections including disloca- 
tions, vacancies, impurities and other 
disorders. 

Equations similar to (2) have been used to 
explain the thermal conductivity of glasses [15] 
and polymers [16] at low temperatures. More 
rigorous derivations using the Debye spectrum 
for the solid frequencies have resulted in com- 
plex equations. Their solutions have successfully 
predicted the temperature dependence of the 
thermal conductivity of crystalline solids at 
low temperatures [17] where k, increasing with 
l/T becomes large as the lattice vibrations 
become increasingly harmonic. However, k 
always passes through a maximum close to 0°K 
when lattice defect scattering takes precedence. 
Then k falls rapidly to zero as a result of the 
behaviour of C, close to 0°K. 

The disordered structure of the glassy state 
defines a relatively low limit for G at all times, so 
that k decreases quite smoothly from the room 
temperature val,ue to zero at 0°K without the 
occurrence of a maximum for these materials. 

Eyring et al. [18] and McLaughlin et al. [19] 
have used lattice theories and expressions like 
equation (2) to predict the thermal conductivi- 
ties of classical liquids below their critical points, 
at densities not much less than the solid density. 
Under these conditions X-ray evidence suggests 
that liquids have a disordered lattice structure 
[20], which emphasizes the similarity between 
the glassy and liquid states, and indicates that 
the calculations are not entirely inappropriate. 
Predictions by Eyring et al. of the temperature 
and pressure dependence of the thermal con- 
ductivity of argon, nitrogen and methane agree 
with experiment to within 4 per cent. 

Lattice theories are applied to quantum 
fluids in this paper, and equation (2) is used to 
estimate how equation (1) (which gives the excess 
thermal conductivity of hydrogen as a function 
of density) must be modified at very low tempera- 
tures. The lattice thermal conductivity, of 
course, is equivalent to the excess thermal 
conductivity, k*, of the fluid and not the total 
conductivity k. k, arises from an entirely 
different mechanism. Hence : 

k*(P, T) = 3 p G C,C, (3) 

where p, t and C, are the density, phonon mean 
free path and velocity of sound for the fluid. 
C, here corresponds to the “vibrational” molar 
specific heat of the fluid and must not be con- 
fused with the actual measured specific heat, 
whose non-vibrational components do not 
contribute to this thermal conductivity mechan- 
ism. It may be thought of as the specific heat of 
the solid extrapolated to the temperature and 
density of the fluid in the absence of melting. 
The excess or residual specific heat C,*, being 
the difference between the specific heat of a 
fluid and of the perfect gas at the same tempera- 
ture, is much used in the thermodynamics and 
statistical mechanics of classical fluids [21]. 
It is less meaningful for hydrogen as it becomes 
negative for the saturated liquid [l]. 

An exact adherence to the Debye theory 
of specific heats [22] will not occur but 
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nevertheless C, will be written : 

C, = 3R D[&p,/T]. (4) 

R is the gas constant, @ the Debye temperature 
and D[B(p)/T] the Debye function, which goes 
to zero with T3 at O”K, and approaches unity 
asymptotically at temperatures above 0. 

Table i. The triple point temperatures und Debye 
temperatures for hydrogen, argon and krypton 

Triple point Debye 
Substance temperature temperature 

(7; “Kf ipK) 
-____ 

Hydrogen 14 100 
Argon 84 85 
Krypton 116 65 

Table 1 contains the triple point temperatures 
7;, and approximate Debye temperatures 0 for 
the solid at zero pressure, for hydrogen [23], 
argon [24] and krypton [24]. The relative 
magnitudes of ?; and 8 indicate that hydrogen 
can exist as a dense fluid at temperatures 
which are below 8, as well as al temperatures 
above 0. Krypton can only exist as a dense 
fluid above 8 and argon is a borderline case. 

Thus it becomes clear that equation (3) has 
all the required characteristics. It can account 
for classical fluids (T always greater than 0) 
having only one form, equation (5), for k* 
throughout the dense gaseous and liquid regions : 

k*(P, T) = p tC,R = k*(p). (5) 

It can also account for k* for hydrogen, 
following the same form, equation (51, at high 
temperatures and another form. equation (6), 
at low temperatures. 

k*(P, T) = p rP C,RD[B(p)/T]. (6) 

Equation (5) states that the product p LC,R 
(and therefore / C,) is determined unambigu- 
ously by density in the classical region. and we 
assume here that its value is the same in the 
quantum region at the same density for the 

same substance. eliminating it from equations 
(5) and (6) one obtains equation (7). 

k*(P, 7’) = k*(p) D[&p)/T]. (7) 

It is clear that a positive (dk*/8T), can arise 
from the positive temperature derivative of 
@qP,!T]. 

In the next section the expressions k*(p) and 
B(p) are obtained as functions of density, from 
experimental data on hydrogen, and equation 
(7) is then used to calculate the thermal con- 
ductivity of gaseous and liquid hydrogen in 
regions where density measurements are avail- 
able. 

THE THERMAL CONDUCTIVITY 

OF HYDROGEN 

The thermal conductivity of hydrogen has 
been measured recently at temperatures be- 
tween -195” and 20°C at pressures up to 
500 atm [4]. The authors, Golubev and Kal’sina, 
do not specify the ortho-para composition of 
their hydrogen, but since they do not mention a 
catalytic converter, the measurements were 
probably made on normal hydrogen. Con- 
firmation of this assumption is found in close 
agreement between their 1 atm data and the 
accepted values [25] for normal hydrogen. 

The maximum density of the compressed gas 
in these measurements 0,036 mol cm- ’ is as 
large as the density of the saturated liquid. 
Golubev and Kal’sina found that the excess 
thermal conductivity was a unique function of 
density over the entire temperature range, and 
they use this relationship to smooth their data, 
which they present at integral temperature and 
pressure intervals. However, they do not present 
their k*(p) relationship, nor do they specify the 
source of their density data. This relationship 
was reproduced using their k*(P, T) data and 
the p(P, T) data of Michels et al. [26]. Experi- 
mental density results are not available for the 
highest pressures and lowest temperatures of 
the thermal conductivity data. These densities 
were obtained by linear extrapolation of P 
versus T isochores from Michet’s data for 



f?(p) as a function of p was obtained from 
Johnston’s data for the thermal conductivity of 
the saturated liquid. Each of his measured 
vaiues of k(P, T), was manipufated as follows: 

ti) 

(ii) 

subtraction of the appropriate k~(~) 
[25] from kfP, T)b to give k*(P, ‘I’), ; 
specification of p at the temperature (and 
pressure) of the measurement [l] ; 
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normal hydrogen, and N.B.S. data for para- 
hydrogen [27]. The use of density data for both 
forms of hydrogen in this extrapolation does 
not introduce significant error, because the 
density is almost independent of ortho-para 
composition [ 11. 

k*(p)/p is presented graphically in Fig. 1 for 
temperatures between -195” and - 150°C 
(78” and 123°K). Most points lie within two per 
cent of the smooth curve. Smoothed values of 
k*(p) are presented in Table 2. 

At densities beiow 2.5 x lo-’ mol cme3, 
k* is well represented by a quadratic equation 
inp: 

k*(p) = 0.308 p + 0.1644 p2, (8) 

k*(p) is the residual thermal conductivity x lo4 
in cal cm-’ s-’ degK- ‘, and p is the density 
x lo2 in mol cne3. 

CONDUCTIVITY OF HYDROGEN 749 

(iii) dete~ination of k*(p) from the tabulated 
values of k*(p) versus p in Table 2; 

(iv) calculation of D[@)/Tf using equation 
(7), and 

(v) calculation of &p)/T and then 8(p) using 
tabulation of D(B/T) and the temperature 
of Johnston’s k(P, T) measurement. 

Table 2. Excess thermal conductivity for compressed normal 
hydrogen gas as a function of density above 78’K 

Residual Residual 
Density thermal Density thermal 
(p X lo2 conductivity (p x lo2 conductivity 

mol (k* x 104caI mol (k’ x 104caf 
cme3) cm-' s-i cm-3) cm-‘s-i 

degK - ‘) degK- ‘) 

0.0 0 WO 2.0 1.272 
0.2 0.068 2.2 1.478 
0.4 0,150 2.4 1.690 
0.6 0.244 2.6 1.895 
0.8 0.352 2.8 2.116 

1.0 0.413 3.0 2.376 
1.2 0.607 3.2 2.656 
l-4 0756 3.4 2.999 
1.6 0.915 3.6 3.424 
1.8 1.087 3.8 3.914 

4.0 4.520 
4.2 5.237 
4.4 6.072 

I I I I I I I I I I I 
0 04 0.8 I.2 I.6 2-o 2.4 2.8 3.2 3.6 4.0 1 

Density p x IO’, mcl cme3 

4 

FOG. 1. The excess thermal conductivity of compressed gaseous hydrogen 
above 78°K. 



750 I. WYNN JONES 

The results are plotted in Fig. 2. Ahlers [23] 
has determined B(p) at higher densities from 
his measurements of C,, for solid hydrogen as a 
function of temperature and pressure. The 
Debye theory of lattice vibrations does not 
allow for any temperature variation of 8. Never- 
theless the Debye 0’s of argon [24], krypton 
[24] and hydrogen [23] decrease by about 10 
per cent from 8, at 0°K and pass through 

140 
c 

o Data obtained from k*fOr 
soturoted liquid hydrogen PI 
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!! IOO- 
1 

“0 
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z 
(u P 60- 
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40- 

20 - 

o Data obtoined from C 
for solid hydrogen 

01 15 ‘K 

'2#4 

Density, p x IO*, mol cm-3 

FIG. 2. Debye temperatures for hydrogen obtained from the 
thermal conductivity of the saturated liquid and the specific 

heat of the solid. 

shallow minima at about 15°K. Non-vibrational 
contributions to C, due to vacancy formation 
complicate the interpretation at higher tempera- 
tures, and it is assumed in this paper that the 
15°K values are appropriate at all higher 
temperatures. These are included in Fig. 2 at 
the three densities of the measurements on solid 
hydrogen. The data for the solid and liquid are 
well fitted by a linear function of p : 

t?(p) = 67 x lo2 p - 189.5 (9) 

where the units of p are mol cme3 and of 8, “K. 

Clearly this expression predicts negative 0’s at 
densities below 2.82 x 10m2 mol cm-3 so 
that it is not used below this density in the 
following calculations. Presumably B(p) curves 
sharply in this region and approaches zero 
asymptotically at p = 0. However, the exact 
form of 8(p) is insignificant here because T/8 is 
always large, and D(@/T) equal to unity. The 
expression : 

&PI) = NP2)(P11PdY 00) 

where y is the Griineisen constant, fits the solid 
data fairly well [23], but a plot of log 13 versus p 
through the liquid and solid data is strongly 
curved, indicating a variable y, and was rejected 
in favour of equation (9) for interpolation of 
0(p) data. 

The thermal conductivity of the dense fluid 
was then calculated at integral temperatures 
and pressures using the following procedure : 

(if 

(ii) 

(iii) 

(iv) 

evaluation of the appropriate density 
from N.B.S. tabulations [27] (the density 
of normal hydrogen is only marginally 
different from that of parahydrogen [I], 
and the difference may be ignored for 
these calculations~ ; 
evaluation of the classical value of k*(p) 
using Table 2, and determination of 
8(p) and hence T/O(p) using equation (9) 
and the appropriate temperature; 
determination of k*(P, T) using equation 
(7) and tabulations of the Debye function ; 
Addition of k*(P, T) and the appropriate 
k,(T) for normal hydrogen [25] to give 
k(P, T). 

RESULTS AND DISCUSSION 

The thermal conductivity of dense fluid 
normal hydrogen, calculated as described in the 
previous section, is presented in Table 3 at 
integral pressures (up to 350 atm) and tempera- 
tures between 17” and 80°K. The thermal 
conductivity of the saturated liquid and vapour, 
and of the freezing liquid is given at close 
temperature intervals in Table 4. Thermal 
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Table 3. Therms co~~tivity of formal hydrogen at i~tegrul ~r~~~~re~ and tg~~~ratures k + t04, cal cm-’ s- ’ degK- ’ 

* 5 lo l5 =O 30 50 75 100 150 200 250 300 350 

17 0.31 2.46 2.44 242 2.39 2.38 2.28 2.20 2.14 
18 p33 2,62 2.63 2.60 2~59 2.54 2.48 2.40 2.35 
20 0.37 2.89 2.84 2.86 2.87 2.83 2.79 2.16 2.71 263 256 
22 0.40 2.99 3.02 3.03 3.02 3.03 3.04 3.02 3.00 2.95 2.91 2.86 2.82 
24 0.44 3.02 3.05 3.08 3.10 3.14 3.17 3.22 3.24 3.23 3,23 3.21 3.16 3.14 

25 046 2.99 3.04 3.08 3.10 3.17 3.23 3.28 3.32 3.33 3.35 3.37 3.33 3.33 
26 0.48 2.96 3.00 3.05 3.09 3.16 3.26 3.32 3.38 3.42 347 3.49 3.51 3.48 
28 0.52 0.62 2.88 2.95 3.02 3-11 3.26 3.39 3.48 3.60 3.67 3.72 3.76 3.76 
30 0.55 064 0.64 2.76 2.88 3.02 3.22 3.39 3~52 3.67 3.81 3.89 3.97 4.02 
32 0.58 0.66 OS4 2.45 2.64 2.87 3.13 3.35 3.50 3.73 3.87 4-03 4.14 4.20 

33 0.60 0.67 @83 2.23 2.50 2.77 3.08 3.32 3.49 3.75 3.99 4.07 4.19 4.31 
34 0.61 0.68 0.81 1.67 2~32 2.66 3.02 3.27 3.46 3.74 3.94 4.11 4.25 4.36 
35 0.63 0.70 0.81 1.14 2.09 2.56 2.96 3.23 3.44 3.74 3.96 4.14 4.30 4.41 
36 0.65 0.71 0.82 1.05 1.78 2.44 2.89 3.18 3.41 3.74 3.97 4.16 4.33 4.47 
38 0.68 0.74 0.83 0.99 1.31 2.15 2.73 3.10 3.32 3.69 3.96 4.17 4.38 4.55 

40 0.71 0.77 0.8: 0.97 1,17 1.84 2.57 2.98 3.24 3.63 3.94 4.18 4.42 4.59 
50 0.87 0.91 0.96 1.03 1.10 1.31 1.86 2.43 2.80 3.30 3.66 3.99 4.28 4.54 
60 1.01 1.04 1.08 1.13 1,18 1.30 1.62 2.05 2.43 2.97 3.31 3.69 3.99 4.30 
70 I-15 1.18 1.21 1.25 1~29 1.37 1.59 1.90 2.21 2.75 3.14 3.47 3.75 4.03 
80 1.31 1.33 1.36 1.39 1.42 1.49 1.66 1.89 2.14 2.61 3.01 3.32 3.60 3.86 

conductivity isobars up to 350 atm from the 
triple point to 80°K and the freezing liquid and 
saturated liquid and vapour data are presented 
in Fig. 3. 

It is clear that the calculated curves closely 
lit the experimental data for the saturated liquid, 
and for the compressed gas at 78°K. Calcula- 
tions for the saturated liquid and vapour were 
continued up to the critical point and in Fig. 3 
are shown to run into each other smoothly at 
k = 1.43 x lop4 cal cm-’ s-i degK_‘. 
However, work referred to earlier [12, 133 
indicates that molecular clustering will cause 
an anomalous increase in k in this region. 
Clustering occurs in the (P, T) region where the 
compressibility becomes very large near to, and 
infinite at, the critical point. It is expected that 
the calculated data will be unreliable here and 
is indicated by broken curves in Fig. 3. 

The calculated values of k should be reliable 
to a few per cent in the remainder of the (P, T) 
range. 

D[@(p)/T] assumes the value of 0.998 at 
80°K and 350 atm, and 0.98 at 78°K and 500 
atm, which is the lowest temperature and 
highest density of Golubev and Kal’sina’s 
measurements. Hence these calculations are 
fully consistent with the classical behaviour of 
the thermal conductivity of hydrogen at 78°K 
and above. At the critical density classical 
behaviour is maintained at all temperatures 
down to the critical temperature. 

A comparison with previous estimates is of 
interest. The correlation of Rogers et aE. [6] 
indicates that compression of the saturated 
liquid will cause a reversion to classical be- 
haviour. This paper, however, predicts that 
compression will bring about even larger devia- 
tions from classical values, as a result of the 
increased value of 0 at higher densities. At 
78_15”K, the predictions of Schaefer and Thodos 
[7] agree with the measurements of Golubev 
and Kal’sina (and this work) at 150 atm only. 
They are too large by 13 per cent at 50 atm and 
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Density [I] 
(p x 10’ mol cm.-3) 

Thermal conductivity 
(k x lo4 cal cm-’ s- ’ degK- ‘) 

Temp. (“K) ______ __l-.-l-~ 

Saturated Saturated Freezing Saturated Saturated Freezing 
liquid vapour liquid liquid vapour liquid 

~ __--.-._ ._._- ll_____l -_---._._.--~. ,. ..-... 
14 3.83 OGO6 3.83 1.83 0.25 1.83 
15 3.79 0~010 3.92 2.05 0.27 1.92 
16 3.74 0.016 4.00 2.29 0.29 2.01 
17 3.70 0023 4-08 2-48 0.32 2.15 

18 3.65 0033 4.15 2.62 0.34 2.24 

19 3.60 0045 4.22 2-76 0.36 2.37 
20 3.54 0060 4.29 2.89 0.38 2-49 
21 3.48 0,078 4.35 2.97 0.41 2.65 
22 3.42 @IO0 4.4 t 2.99 0.43 2.82 

23 3.36 0.126 4.47 3.02 0.46 3.00 

24 3.29 0,157 3.01 0.49 
25 3.21 0,194 2.99 0.52 
26 3.13 0238 2.94 0.56 
27 3.04 0,290 2.88 0.60 
28 2.94 0,353 2.19 0.64 

29 2.82 0429 2.67 0.69 
30 2.69 @524 2.54 0.75 
31 2.53 064X 2.39 0.83 
32 2.31 2.18 
33 1.90 1.78 

33.18 1.49 1.49 1.43 1.43 

Experimental values 
l Saturated liquid 
. Compressed gas al 7SDK 

0 IO 20 30 40 50 60 70 80 

Temperature, OK 

FIG. 3. Thermal conductivity isobars for normal hydrogen from the triple point to 80‘ K at pressures 
up to 350 atm. 
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too small by 9 per cent at 300 attn. At the 
critical temperature above 50 atm they are 
smaller by 15-18 per cent than the values in 
this paper. Their predictions for the saturated 
and compressed liquid are quite different from 
these because of their neglect of the positive 
value of (ak/iJT), . At 20°K they predict that a 
pressure of 100 atm increases the thermal 
conductivity of the liquid by 12 per cent, 

whereas this paper predicts a decrease of 6 per 
cent. 

of k*(p) are scattered by about rt 15 per cent, 
and the results apply to a much higher tempera- 
ture range, this discrepancy is not significant to 

Values of k*(p) at densities up to 1.8 x 10e2 
mol cm- 3 from Hamrin and Thodos’s [28] 
very recent measurements above O”C, are about 
30 per cent higher than those used in this paper. 
However, since their individual measurements 
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Rtum&-Les rbuhats de conductivite termique pour I’hydrogtne normal liquide sature et pour le gaz 
comprimt a 500 atm entm 78” et 3OO”K, ont 6te corr616 par une fonction simple reliant la conductivite 
thermique suppl%rxntaire, la masse volumique et la temperature. 

La dependaxe de cette fonction par rapport a la temperature a tte obtenue sur la base d’une theorie 
de la conductivite thermique avec le modele du rtseau. On t’a employe pour caicuier la conductivite 
thermique de l’hydrogkne fhride dense entre le point triple et 80°K g des pressions allant jusquP 350 atm 

pour lesqoelles ii n‘y a pas de resultats exp~rimentaux. 

Zusammenfassung-Werte der Wlrmeleitftihigkeit fiir geslttigte Fhissigkeit, Normaiwasserstoff und fiir 
em Gas, das auf 500 atm komprimiert wurde im Bereich 7%3OO”K, wurden einer einfachen Funktion 
angepasst, die eine Beziehung herstelh zwischen Erhohung der WLrmeleitWhigkeit, Dichte und Tempera- 
tur. Se Temperaturabhangigkeit dieser Funktion wurde mit Hilfe einer Gittertheorie der Warmeleit- 
fahigkeit von Wasserstoff zwischen Tripelpunkt und 80”K, bei Drticken bis zu 350 atm. Dafiir lagen bisher 

keine Versuchsergebnisse vor. 

AEHOTaqHJr-TennOnpOBO~HoCTb HacnuJeHHoro H(EIAKO~O o6nusoro BoaopoAa a ra3a,. 

C)KaTOrO J&O 500 aTM npn 7$-300”K, OnaCblBaeTcR IlpOCTO# $yHKI&HeZ1, yWIZIBaIO~efi 

Zi36bITOWIylO TeiUIOIIpOBO~HOCTb, ~JXOTHOCT~ II TemepaTypy. Ha OcKoBaHm peureTosao%& 

TeOpliE Te~~O~pOBO~HOCTK IlOJIyqeHa Te~~epaTyp~aK 3aBACHMOCTb &W 3TOa +yHK&SiM. 

OHa ~c~o~b3oBa~acb J&m% pameT Te~~O~pOBO~HOCTK ~~OTHoro Bo$!&opofa IIpH TeMnepa- 

Type OT TpO~~iO~ T09KEi RO 80°K iI ~aB~eHKK RO %!% aT~,3KC~ep~i~eHTa~bH~e AaHHbZe RJlR 

KOTOpblX OTCyTCTBymT. 


